May 13, 2025

The Health

Your health, your choice

Exploring the impact of digital distrust on user resistance to e-health services among older adults: the moderating effect of anticipated regret

Exploring the impact of digital distrust on user resistance to e-health services among older adults: the moderating effect of anticipated regret

  • Abraham C, Sheeran P (2004) Deciding to exercise: the role of anticipated regret. Br J Health Psychol 9(2):269–278. https://doi.org/10.1348/135910704773891096

    Article 
    PubMed 

    Google Scholar 

  • Adeleke R (2021) Digital divide in Nigeria: the role of regional differentials. Afr J. Sci Technol Innov Dev 13(3):333–346. https://doi.org/10.1080/20421338.2020.1748335

    Article 
    MathSciNet 

    Google Scholar 

  • AlBar AM, Hoque MR (2019) Patient acceptance of e-health services in Saudi Arabia: an integrative perspective. Telemed E-Health 25(9):847–852. https://doi.org/10.1089/tmj.2018.0107

    Article 

    Google Scholar 

  • Anderson J, Rainie L (2018) The future of well-being in a tech-saturated world. Pew Research Center: Internet, Science and Tech

  • Aririguzoh S, Amodu L, Sobowale I, Ekanem T, Omidiora O (2021) Achieving sustainable e-health with information and communication technologies in Nigerian rural communities. Cogent Soc Sci 7(1):1887433. https://doi.org/10.1080/23311886.2021.1887433

    Article 

    Google Scholar 

  • Asch SE (1955) Opinions and social pressure. Sci Am 193(5):31–35

    Article 
    ADS 

    Google Scholar 

  • Aseidu ST, Boateng R (2020) Exploring the scope of user resistance: a bibliometric review of 41 years of research. In: Boateng R (ed) Handbook of research on managing information systems in developing economies, edited. IGI Global, pp 548–572

  • Aslam M (2011) User resistance in post ERP implementation. Bus Process Manag J 17:266–275

    Google Scholar 

  • Bae TJ, Lee CK, Lee Y, McKelvie A, Lee WJ (2024) Descriptive norms and entrepreneurial intentions: the mediating role of anticipated inaction regret. Front Psychol 14:1203394. https://doi.org/10.3389/fpsyg.2023.1203394

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagozzi RP, Yi Y (1988) On the evaluation of structural equation models. J Acad Mark Sci 16:74–94

    Article 

    Google Scholar 

  • Baki R, Birgoren B, Aktepe A (2021) Identifying factors affecting intention to use in distance learning systems. Turk Online J Distance Educ 22(2):Article 2. https://doi.org/10.17718/tojde.906545

    Article 

    Google Scholar 

  • Bandura A (1977) Self-efficacy: toward a unifying theory of behavioral change. Psychol Rev 84(2):191–215. https://doi.org/10.1037/0033-295X.84.2.191

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bearden WO, Netemeyer RG, Teel JE (1989) Measurement of consumer susceptibility to interpersonal influence. J Consum Res 15(4):473–481. https://doi.org/10.1086/209186

    Article 

    Google Scholar 

  • Brewer NT, DeFrank JT, Gilkey MB (2016) Anticipated regret and health behavior: a meta-analysis. Health Psychol 35(11):1264–1275. https://doi.org/10.1037/hea0000294

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brewer NT, Chapman GB, Rothman AJ, Leask J, Kempe A (2017) Increasing vaccination: putting psychological science into action. Psychol Sci Public Interest 18(3):149–207. https://doi.org/10.1177/1529100618760521

    Article 
    PubMed 

    Google Scholar 

  • Brooks J, Reed DM, Savage B (2016) Taking off with a pilot: the importance of testing research instruments. In: Benson V, Filippaios G (eds) ECRM2016—Proceedings of the 15th European Conference on Research Methodology for business management. Academic Conferences and Publishing Limited, pp 51–59

  • Cambefort M, Roux E (2019) A typology of the perceived risks in the context of consumer brand resistance. J Prod Brand Manag 28(5):575–585

    Article 

    Google Scholar 

  • Cao Y, Li J, Qin X, Hu B (2020) Examining the effect of overload on the mHealth application resistance behavior of elderly users: an SOR perspective. Int J Environ Res Public Health 17(18):Article 18. https://doi.org/10.3390/ijerph17186658

    Article 

    Google Scholar 

  • Caso D, Carfora V, Starace C, Conner M (2019) Key factors influencing Italian mothers’ intention to vaccinate sons against HPV: the influence of trust in health authorities, anticipated regret and past behaviour. Sustainability 11(23):Article 23. https://doi.org/10.3390/su11236879

    Article 

    Google Scholar 

  • Caso D, Capasso M, Fabbricatore R, Conner M (2022) Understanding the psychosocial determinants of Italian parents’ intentions not to vaccinate their children: an extended theory of planned behaviour model. Psychol Health 37(9):1111–1131. https://doi.org/10.1080/08870446.2021.1936522

    Article 
    PubMed 

    Google Scholar 

  • Chang H-J, Eckman M, Yan R-N (2011) Application of the stimulus–organism–response model to the retail environment: the role of hedonic motivation in impulse buying behavior. Int Rev Retail Distrib Consum Res 21(3):233–249

    Google Scholar 

  • Chaouali W, Yahia IB, Souiden N (2016) The interplay of counter-conformity motivation, social influence, and trust in customers’ intention to adopt Internet banking services: the case of an emerging country. J Retail Consum Serv 28:209–218

    Article 

    Google Scholar 

  • Cheng S, Lee S-J, Lee K-R (2014) User resistance of mobile banking in China: focus on perceived risk. Int J Secur Appl 8(2):167–172

    Google Scholar 

  • Choi HJ, Krieger JL, Hecht ML (2013) Reconceptualizing efficacy in substance use prevention research: refusal response efficacy and drug resistance self-efficacy in adolescent substance use. Health Commun 28(1):40–52. https://doi.org/10.1080/10410236.2012.720245

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chouk I, Mani Z (2022) Does the learning ability of smart products lead to user resistance? J Eng Technol Manag 66:101706

    Article 

    Google Scholar 

  • Chua G, Yuen KF, Wang X, Wong YD (2021) The determinants of panic buying during COVID-19. Int J Environ Res Public Health 18(6):3247. https://doi.org/10.3390/ijerph18063247

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cialdini RB, Goldstein NJ (2004) Social influence: compliance and conformity. Annu Rev Psychol 55(1):591–621. https://doi.org/10.1146/annurev.psych.55.090902.142015

    Article 
    PubMed 

    Google Scholar 

  • Cohen J (2013) Statistical power analysis for the behavioral sciences. Academic Press

  • Conner M, McEachan R, Taylor N, O’Hara J, Lawton R (2015) Role of affective attitudes and anticipated affective reactions in predicting health behaviors. Health Psychol 34(6):642–652. https://doi.org/10.1037/hea0000143

    Article 
    PubMed 

    Google Scholar 

  • Coppolino Perfumi S, Bagnoli F, Caudek C, Guazzini A (2019) Deindividuation effects on normative and informational social influence within computer-mediated-communication. Comput Hum Behav 92:230–237. https://doi.org/10.1016/j.chb.2018.11.017

    Article 

    Google Scholar 

  • Dahri NA, Al-Rahmi WM, Almogren AS, Yahaya N, Vighio MS, Al-maatuok Q, Al-Rahmi AM, Al-Adwan AS (2023) Acceptance of mobile learning technology by teachers: influencing mobile self-efficacy and 21st-century skills-based training. Sustainability 15(11):8514

    Article 

    Google Scholar 

  • de Veer AJE, Peeters JM, Brabers AE, Schellevis FG, Rademakers JJJ, Francke AL (2015) Determinants of the intention to use e-Health by community dwelling older people. BMC Health Serv Res 15:103. https://doi.org/10.1186/s12913-015-0765-8

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deutsch M, Gerard HB (1955) A study of normative and informational social influences upon individual judgment. J Abnorm Soc Psychol 51(3):629–636. https://doi.org/10.1037/h0046408

    Article 
    CAS 

    Google Scholar 

  • Doan TTT (2021) The effect of perceived risk and technology self-efficacy on online learning intention: an empirical study in Vietnam. J Asian Financ Econ Bus 8(10):385–393

    Google Scholar 

  • Donath J (2014) The social machine: designs for living online. MIT Press

  • Dowling GR, Staelin R (1994) A model of perceived risk and intended risk-handling activity. J Consum Res 21(1):119–134. https://doi.org/10.1086/209386

    Article 

    Google Scholar 

  • Ellen PS, Bearden WO, Sharma S (1991) Resistance to technological innovations: an examination of the role of self-efficacy and performance satisfaction. J Acad Mark Sci 19(4):297–307. https://doi.org/10.1007/BF02726504

    Article 

    Google Scholar 

  • Ellis EM, Elwyn G, Nelson WL, Scalia P, Kobrin SC, Ferrer RA (2018) Interventions to engage affective forecasting in health-related decision making: a meta-analysis. Ann Behav Med 52(2):157–174. https://doi.org/10.1093/abm/kax024

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ezeudoka BC, Fan M (2024) Determinants of behavioral intentions to use an E-Pharmacy service: insights from TAM theory and the moderating influence of technological literacy. Res Soc Adm Pharm 20(7):605–617. https://doi.org/10.1016/j.sapharm.2024.03.007

    Article 

    Google Scholar 

  • Falk RF, Miller NB (1992) A primer for soft modeling. University of Akron Press

  • Fan M, Ezeudoka BC, Qalati SA (2024) Exploring the resistance to e-health services in Nigeria: an integrative model based upon the theory of planned behavior and stimulus-organism-response. Humanit Soc Sci Commun 11(1):1–14

    Article 

    Google Scholar 

  • Fan M, Huang Y, Qalati SA, Shah SMM, Ostic D, Pu Z (2021) Effects of information overload, communication overload, and inequality on digital distrust: a cyber-violence behavior mechanism. Front Psychol 12:643981

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Figueiredo A (2018) Information frictions in education and inequality. November 2018 meeting papers, vol 804. Society for Economic Dynamics

  • Fornell C, Larcker DF (1981) Evaluating structural equation models with unobservable variables and measurement error. J Mark Res 18(1):39–50

    Article 

    Google Scholar 

  • George G, Camarata MR (1996) Managing instructor cyberanxiety: the role of self-efficacy in decreasing resistance to change. Educ Technol 36(4):49–54

    Google Scholar 

  • Haddock C, Wisheart P, New Zealand Mountain Safety Council (1993) Managing risks in outdoor activities/Cathye Haddock. In: Wisheart P (ed) (photographs, Haddock C, Goldring R; illustrations, Sunderland H), Mountain safety manual, 1st edn. New Zealand Mountain Safety Council

  • Hair JF, Ringle CM, Sarstedt M (2011) PLS-SEM: indeed a silver bullet. J Mark Theory Pract 19(2):139–152

    Article 

    Google Scholar 

  • Hamama-Raz Y, Ginossar-David E, Ben-Ezra M (2016) Parental regret regarding children’s vaccines—the correlation between anticipated regret, altruism, coping strategies and attitudes toward vaccines. Isr J Health Policy Res 5(1):55. https://doi.org/10.1186/s13584-016-0116-1

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hargittai E, Hinnant A (2008) Digital inequality: differences in young adults’ use of the Internet. Commun Res 35(5):602–621. https://doi.org/10.1177/0093650208321782

    Article 

    Google Scholar 

  • Hashmi H, Attiq S, Rasheed F (2019) Factors affecting online impulsive buying behavior: a stimulus organism response model approach. Market Forces 14(1). https://kiet.edu.pk/marketforces/index.php/marketforces/article/view/392

  • Henseler J, Ringle CM, Sarstedt M (2015) A new criterion for assessing discriminant validity in variance-based structural equation modeling. J Acad Mark Sci 43:115–135

    Article 

    Google Scholar 

  • Hidayanto AN, Anggorojati B, Abidin Z, Phusavat K (2020) Data modeling positive security behavior implementation among smart device users in Indonesia: a partial least squares structural equation modeling approach (PLS-SEM). Data Brief 30:105588

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hox JJ, Bechger TM (1998) An introduction to structural equation modeling [Article]. Struct Equ Model. https://dspace.library.uu.nl/handle/1874/23738

  • Hu L, Bentler PM (1998) Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychol Methods 3(4):424

    Article 

    Google Scholar 

  • Huang T (2023) Using SOR framework to explore the driving factors of older adults smartphone use behavior. Humanit Soc Sci Commun 10(1):Article 1. https://doi.org/10.1057/s41599-023-02221-9

    Article 

    Google Scholar 

  • Jacoby J (2002) Stimulus–organism–response reconsidered: an evolutionary step in modeling (consumer) behavior. J Consum Psychol 12(1):51–57. https://doi.org/10.1207/S15327663JCP1201_05

    Article 

    Google Scholar 

  • Jain N, Raman TV (2023) The interplay of perceived risk, perceive benefit and generation cohort in digital finance adoption. EuroMed J Bus 18(3):359–379

    Article 

    Google Scholar 

  • Joseph RC (2010) Individual resistance to IT innovations. Commun ACM 53(4):144–146. https://doi.org/10.1145/1721654.1721693

    Article 

    Google Scholar 

  • Kenny DA (2020) SEM: measuring model fit. Accessed 30 Apr 2024

  • Khilnani A, Schulz J, Robinson L (2020) The COVID-19 pandemic: new concerns and connections between eHealth and digital inequalities. J Inf Commun Ethics Soc 18(3):393–403

    Article 

    Google Scholar 

  • Kim H-J, Lee J-M, Rha J-Y (2017) Understanding the role of user resistance on mobile learning usage among university students. Comput Educ 113:108–118

    Article 

    Google Scholar 

  • Kim H-W, Kankanhalli A (2009) Investigating user resistance to information systems implementation: a status quo bias perspective. MIS Q 33(3):567–582. https://doi.org/10.2307/20650309

    Article 

    Google Scholar 

  • Kim MJ, Lee C-K, Jung T (2020) Exploring consumer behavior in virtual reality tourism using an extended stimulus–organism–response model. J Travel Res 59(1):69–89. https://doi.org/10.1177/0047287518818915

    Article 

    Google Scholar 

  • Kim S, Park H-S (2017) Impacts of individual and technical characteristics on perceived risk and user resistance of mobile payment services. J Digit Converg 15(12):239–253

    Google Scholar 

  • Kim W, Kreps GL, Shin C-N (2015) The role of social support and social networks in health information–seeking behavior among Korean Americans: a qualitative study. Int J Equity Health 14(1):40. https://doi.org/10.1186/s12939-015-0169-8

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klaus T, Blanton JE (2010) User resistance determinants and the psychological contract in enterprise system implementations. Eur J Inf Syst 19(6):625–636. https://doi.org/10.1057/ejis.2010.39

    Article 

    Google Scholar 

  • Kleijnen M, Lee N, Wetzels M (2009) An exploration of consumer resistance to innovation and its antecedents. J Econ Psychol 30(3):344–357

    Article 

    Google Scholar 

  • Kock N (2015) Common method bias in PLS-SEM: a full collinearity assessment approach. Int J E-Collab 11(4):1–10. https://doi.org/10.4018/ijec.2015100101

    Article 

    Google Scholar 

  • Koehle H, Kronk C, Lee YJ (2022) Digital health equity: addressing power, usability, and trust to strengthen health systems. Yearb Med Inform 31(1):20–32. https://doi.org/10.1055/s-0042-1742512

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koyuncu B, Dönmez P (2018) Predictive value of sense of self-efficacy and attitudes of high school students for their resistance to mathematics. Univers J Educ Res 6(8):1629–1636

    Article 

    Google Scholar 

  • Kumari A, Tanwar S, Tyagi S, Kumar N (2018) Fog computing for Healthcare 4.0 environment: opportunities and challenges. Comput Electr Eng 72:1–13

    Article 

    Google Scholar 

  • Kwak J, Park J (2012) Effects of a regulatory match in sunk-cost effects: a mediating role of anticipated regret. Mark Lett 23(1):209–222. https://doi.org/10.1007/s11002-011-9148-z

    Article 

    Google Scholar 

  • Laato S, Islam AKMN, Farooq A, Dhir A (2020) Unusual purchasing behavior during the early stages of the COVID-19 pandemic: the stimulus–organism–response approach. J Retail Consum Serv 57:102224. https://doi.org/10.1016/j.jretconser.2020.102224

    Article 

    Google Scholar 

  • Langevoort DC (1997) Organized illusions: a behavioral theory of why corporations mislead stock market investors (and cause other social harms). Univ PA Law Rev 146:101

    Article 

    Google Scholar 

  • Lapointe L, Rivard S (2005) A multilevel model of resistance to information technology implementation. MIS Q 29(3):461–491. https://doi.org/10.2307/25148692

    Article 

    Google Scholar 

  • Li B, Hu M, Chen X, Lei Y (2021) The moderating role of anticipated regret and product involvement on online impulsive buying behavior. Front Psychol 12. https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2021.732459

  • Lin J-SC, Chou E-Y, Lin C-Y (2016) What if I make the wrong decision? The role of anticipated regret in switching barrier based customer retention. In: Groza MD, Ragland CB (eds) Marketing challenges in a turbulent business environment. Springer International Publishing, pp. 123–126

  • Ma W, Tariq A, Ali MW, Nawaz MA, Wang X (2022) An empirical investigation of virtual networking sites discontinuance intention: stimuli organism response-based implication of user negative disconfirmation. Front Psychol 13:862568

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malau M, Indartono S, Tianawati AKA (2022) Learning motivation and authoritative parenting for self-regulated learning: the mediation of self-efficacy. J Pendidik Indones 11(4). https://ejournal.undiksha.ac.id/index.php/JPI/article/view/49822

  • Marziali E (2009) E-Health program for patients with chronic disease. Telemed E-Health 15(2):176–181. https://doi.org/10.1089/tmj.2008.0082

    Article 

    Google Scholar 

  • Matsuo M, Minami C, Matsuyama T (2018) Social influence on innovation resistance in Internet banking services. J Retail Consum Serv 45:42–51. https://doi.org/10.1016/j.jretconser.2018.08.005

    Article 

    Google Scholar 

  • Mehrabian A, Russell JA (1974) An approach to environmental psychology. The MIT Press, pp. xii, 266

  • Mehrotra A, Prewitt E (2019) New marketplace survey: convenient care—opportunity, threat, or both? NEJM Catalyst 5(4)

  • Ming J, Jianqiu Z, Bilal M, Akram U, Fan M (2021) How social presence influences impulse buying behavior in live streaming commerce? The role of S–O–R theory. Int J Web Inf Syst 17(4):300–320. https://doi.org/10.1108/IJWIS-02-2021-0012

    Article 

    Google Scholar 

  • Mohtar S, Abbas M (2015) Consumer resistance to innovation due to perceived risk: relationship between perceived risk and consumer resistances to innovation. J Technol Oper Manag 10(1):1–13

    Google Scholar 

  • Morahan-Martin J, Schumacher P (2003) Loneliness and social uses of the Internet. Comput Hum Behav 19(6):659–671. https://doi.org/10.1016/S0747-5632(03)00040-2

    Article 

    Google Scholar 

  • National Bureau of Statistics (2024) Reports. Accessed 26 Apr 2024

  • Ngafeeson M (2015) Understanding user resistance to information technology in healthcare: the nature and role of perceived threats. 3(1)

  • Nordgren LF, van der Pligt J, van Harreveld F (2007) Unpacking perceived control in risk perception: the mediating role of anticipated regret. J Behav Decis Mak 20(5):533–544. https://doi.org/10.1002/bdm.565

    Article 

    Google Scholar 

  • Noreen M, Ghazali Z, Mia MS (2021) The impact of perceived risk and trust on adoption of mobile money services: an empirical study in Pakistan. J Asian Finance Econ Bus 8(6):347–355

    Google Scholar 

  • Nunnally J (1978) Psychometric methods, 2nd edn. McGraw-Hill, New York, NY

    Google Scholar 

  • O’Carroll RE, Ferguson E, Hayes PC, Shepherd L (2012) Increasing organ donation via anticipated regret (INORDAR): Protocol for a randomised controlled trial. BMC Public Health 12(1):169. https://doi.org/10.1186/1471-2458-12-169

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Carroll RE, Foster C, McGeechan G, Sandford K, Ferguson E (2011) The “ick” factor, anticipated regret, and willingness to become an organ donor. Health Psychol 30(2):236–245. https://doi.org/10.1037/a0022379

    Article 
    PubMed 

    Google Scholar 

  • Paré G, Jaana M, Sicotte C (2007) Systematic review of home telemonitoring for chronic diseases: the evidence base. J Am Med Inform Assoc 14(3):269–277. https://doi.org/10.1197/jamia.M2270

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peek STM, Wouters EJM, van Hoof J, Luijkx KG, Boeije HR, Vrijhoef HJM (2014) Factors influencing acceptance of technology for aging in place: a systematic review. Int J Med Inform 83(4):235–248. https://doi.org/10.1016/j.ijmedinf.2014.01.004

    Article 
    PubMed 

    Google Scholar 

  • Polizzi SJ, Zhu Y, Reid JW, Ofem B, Salisbury S, Beeth M, Roehrig G, Mohr-Schroeder M, Sheppard K, Rushton GT (2021) Science and mathematics teacher communities of practice: social influences on discipline-based identity and self-efficacy beliefs. Int J STEM Educ 8(1):30. https://doi.org/10.1186/s40594-021-00275-2

    Article 

    Google Scholar 

  • Prakash AV, Das S (2022) Explaining citizens’ resistance to use digital contact tracing apps: a mixed-methods study. Int J Inf Manag 63:102468

    Article 

    Google Scholar 

  • Quintal VA, Lee JA, Soutar GN (2010) Tourists’ information search: the differential impact of risk and uncertainty avoidance. Int J Tour Res 12(4):321–333. https://doi.org/10.1002/jtr.753

    Article 

    Google Scholar 

  • Regmi PR, Waithaka E, Paudyal A, Simkhada P, van Teijlingen E (2016) Guide to the design and application of online questionnaire surveys. Nepal J Epidemiol 6(4):640–644. https://doi.org/10.3126/nje.v6i4.17258

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reisinger Y, Mavondo F (2005) Travel anxiety and intentions to travel internationally: implications of travel risk perception. J Travel Res 43(3):212–225. https://doi.org/10.1177/0047287504272017

    Article 

    Google Scholar 

  • Sampat B, Raj S (2022) Fake or real news? Understanding the gratifications and personality traits of individuals sharing fake news on social media platforms. Aslib J Inf Manag 74(5):840–876. https://doi.org/10.1108/AJIM-08-2021-0232

    Article 

    Google Scholar 

  • Sandberg T, Conner M (2008) Anticipated regret as an additional predictor in the theory of planned behaviour: a meta-analysis. Br J Soc Psychol 47(4):589–606. https://doi.org/10.1348/014466607X258704

    Article 
    PubMed 

    Google Scholar 

  • Scholtz SE (2021) Sacrifice is a step beyond convenience: a review of convenience sampling in psychological research in Africa SA J Ind Psychol 47(1):1–12

    Google Scholar 

  • Sha Y, Yan J, Wang Z (2015) Public trust on the Red Cross Society of China after Ya’an earthquake: analysis based on sentiment analysis of microblog data. J Public Manag 12:93–104

    Google Scholar 

  • Shahzad MF, Xu S, Baheer R (2024) Assessing the factors influencing the intention to use information and communication technology implementation and acceptance in China’s education sector. Humanit Soc Sci Commun 11(1):Article 1. https://doi.org/10.1057/s41599-024-02777-0

    Article 

    Google Scholar 

  • Slade EL, Dwivedi YK, Piercy NC, Williams MD (2015) Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychol Mark 32(8):860–873. https://doi.org/10.1002/mar.20823

    Article 

    Google Scholar 

  • Sniehotta FF, Presseau J, Araújo-Soares V (2014) Time to retire the theory of planned behaviour. Health Psychol Rev 8(1):1–7. https://doi.org/10.1080/17437199.2013.869710

    Article 
    PubMed 

    Google Scholar 

  • Statista (2020) Nigeria: old population by gender. Accessed 30 Apr 2024

  • Statista (2024) Africa number of internet users by country. Accessed 26 Apr 2024

  • Stevens CJ, Gillman AS, Gardiner CK, Montanaro EA, Bryan AD, Conner M (2019) Feel good now or regret it later? The respective roles of affective attitudes and anticipated affective reactions for explaining health-promoting and health risk behavioral intentions. J Appl Soc Psychol 49(6):331–348. https://doi.org/10.1111/jasp.12584

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoica A (2020) From social influence to cyber influence. The role of new technologies in the influence operations conducted in the digital environment. Int J Cyber Dipl 1(1):27–35

    Google Scholar 

  • Talwar S, Dhir A, Islam N, Kaur P, Almusharraf A (2023) Resistance of multiple stakeholders to e-health innovations: integration of fundamental insights and guiding research paths. J Bus Res 166:114135

    Article 

    Google Scholar 

  • Tanwar S, Parekh K, Evans R (2020) Blockchain-based electronic healthcare record system for healthcare 4.0 applications. J Inf Secur Appl 50:102407. https://doi.org/10.1016/j.jisa.2019.102407

    Article 

    Google Scholar 

  • Tsai C-L, Cho M-H, Marra R, Shen D (2020) The Self-efficacy Questionnaire for online Learning (SeQoL). Distance Educ 41(4):472–489. https://doi.org/10.1080/01587919.2020.1821604

    Article 

    Google Scholar 

  • United Nations (2022) World population prospects—Population Division. Accessed 28 Nov 2023

  • van der Linden S (2022) Misinformation: susceptibility, spread, and interventions to immunize the public. Nat Med 28(3):460–467. https://doi.org/10.1038/s41591-022-01713-6

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wong AKC, Bayuo J, Wang S, Kwan RYC, Lam SC, Wong FKY (2023) Factors associated with the perceptions of eHealth technology of Chinese nurses and nursing students. Nurse Educ Pract 69:103605. https://doi.org/10.1016/j.nepr.2023.103605

    Article 
    PubMed 

    Google Scholar 

  • World Health Assembly (2005) Fifty-eighth World Health Assembly, Geneva, 16–25 May 2005: resolutions and decisions: annex (WHA58/2005/REC/1). World Health Organization. https://apps.who.int/iris/handle/10665/20398

  • Yan S (2022) Lack of self-efficacy and resistance to innovation impact on insufficient learning capabilities: mediating the role of demotivation and moderating the role of institutional culture. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.923577

  • Yoo J, Choi S, Hwang Y, Yi MY (2021) The role of user resistance and social influences on the adoption of Smartphone: moderating effect of age. J Organ End Use Comput 33(2):36–58. https://doi.org/10.4018/JOEUC.20210301.oa3

    Article 

    Google Scholar 

  • Yuliati LN, Dradjat HA, Simanjuntak M (2020) Online bike: role of perceived technology, perceived risk, and institution-based trust on service usage via online trust. Cogent Bus Manag 7(1):1798067. https://doi.org/10.1080/23311975.2020.1798067

    Article 

    Google Scholar 

  • Zhang H (2023) Technostress, academic self-efficacy, and resistance to innovation: buffering roles of knowledge sharing culture and constructive deviant behavior. Psychol Res Behav Manag 16:3867–3881. https://doi.org/10.2147/PRBM.S424396

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang X, Han X, Dang Y, Meng F, Guo X, Lin J (2017) User acceptance of mobile health services from users’ perspectives: the role of self-efficacy and response-efficacy in technology acceptance. Inform Health Soc Care 42(2):194–206. https://doi.org/10.1080/17538157.2016.1200053

    Article 
    PubMed 

    Google Scholar 

  • link