October 7, 2024

The Health

Your health, your choice

Digital transformation of mental health services

Digital transformation of mental health services

  • Pierce, M. et al. Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. Lancet Psychiatry 7, 883–892 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • CDC. About mental health. Centers for Disease Control and Prevention. (2021).

  • Henderson, C., Evans-Lacko, S. & Thornicroft, G. Mental illness stigma, help seeking, and public health programs. Am. J. Public Health 103, 777–780 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cooper C. Thousands attempt suicide while on NHS waiting list for psychological help. (2014).

  • Morozov, E. To Save Everything, Click Here: The Folly of Technological Solutionism (Public Affairs, 2014).

  • Mulvenna, M. D. et al. Ethical issues in democratizing digital phenotypes and machine learning in the next generation of digital health technologies. Philos. Technol. 34, 1945–1960 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freitas, J. R. S. et al. Virtual reality exposure treatment in phobias: a systematic review. Psychiatr. Q. 92, 1685–1710 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bollmer, G. Empathy machines. Media Int. Aust. 165, 63–76 (2017).

    Article 

    Google Scholar 

  • Quigley, F., Moorhead, A., Bond, R., Zheng, H. & McAloon, T. A virtual reality training tool to improve weight-related communication across healthcare settings. In Proceedings of the 31st European Conference on Cognitive Ergonomics 19–22 (2019).

  • Fitzpatrick, K. K., Darcy, A. & Vierhile, M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Ment. Health 4, e7785 (2017).

    Article 

    Google Scholar 

  • Salmi, S., Mérelle, S., Gilissen, R. & Brinkman, W. P. Content-based recommender support system for counselors in a suicide prevention chat helpline: design and evaluation study. J. Med. Internet Res. 23, e21690 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benítez-Guijarro, A. et al. Co-creating Requirements and Assessing End-User Acceptability of a Voice-Based Chatbot to Support Mental Health: A Thematic Analysis of a Living Lab Workshop. In: D’Haro, L. F., Callejas, Z., Nakamura, S. (eds) Conversational Dialogue Systems for the Next Decade. Lecture Notes in Electrical Engineering, vol 704. Springer, Singapore. (2021).

  • O’Neill, S. et al. Data analytics of call log data to identify caller behaviour patterns from a mental health and well-being helpline. Health Informatics J. 25, 1722–1738 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Insel, T. R. Digital phenotyping: a global tool for psychiatry. World Psychiatry 17, 276 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chekroud, A. M. et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry 20, 154–170 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grigorash, A. et al. Predicting caller type from a mental health and well-being helpline: analysis of call log data. JMIR Ment. Health 5, e9946 (2018).

    Article 

    Google Scholar 

  • Potts, C. et al. Chatbots to support mental wellbeing of people living in rural areas: can user groups contribute to co-design? J. Technol. Behav. Sci. 6, 652–665 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lehtimaki, S., Martic, J., Wahl, B., Foster, K. T. & Schwalbe, N. Evidence on digital mental health interventions for adolescents and young people: systematic overview. JMIR Ment. Health 8, e25847 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • BBC. Generation mute… no talking aloud. (2018).

  • Clear, J. Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad Ones (Penguin, 2018).

  • Balaskas, A., Schueller, S. M., Cox, A. L. & Doherty, G. Understanding users’ perspectives on mobile apps for anxiety management. Front. Digit. Health 4, 178 (2022).

  • Potts, C. et al. Ecological momentary assessment within a digital health intervention for reminiscence in persons with dementia and caregivers: user engagement study. JMIR mHealth uHealth 8, e17120 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • ORCHA. Digital & mental health recovery action plans. (2021).

  • Camacho, E., Cohen, A. & Torous, J. Assessment of mental health services available through smartphone apps. JAMA Netw. Open 5, e2248784 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koh, J., Tng, G. Y. & Hartanto, A. Potential and pitfalls of mobile mental health apps in traditional treatment: an umbrella review. J. Pers. Med. 12, 1376 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baumel, A., Muench, F., Edan, S. & Kane, J. M. Objective user engagement with mental health apps: systematic search and panel-based usage analysis. J. Med. Internet Res. 21, e14567 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torous, J., Nicholas, J., Larsen, M. E., Firth, J. & Christensen, H. Clinical review of user engagement with mental health smartphone apps: evidence, theory and improvements. Evid. Based Ment. Health 21, 116–119 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greenhalgh, T. et al. Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J. Med. Internet Res. 19, e8775 (2017).

    Article 

    Google Scholar 

  • Wisniewski, H., Gorrindo, T., Rauseo-Ricupero, N., Hilty, D. & Torous, J. The role of digital navigators in promoting clinical care and technology integration into practice. Digit. Biomark. 4, 119–135 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Henderson, B. et al. Designing social prescription services to support people with long-term conditions. In ENoLL Open Living Lab Days 2014 Conference Proceedings 158–170 (European Network of Living Labs, 2014).

  • Orben, A. & Przybylski, A. K. Screens, teens, and psychological well-being: evidence from three time-use-diary studies. Psychol. Sci. 30, 682–696 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torous, J. et al. The growing field of digital psychiatry: current evidence and the future of apps, social media, chatbots, and virtual reality. World Psychiatry 20, 318–335 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reeves, B. & Nass, C. The Media Equation: How People Treat Computers, Television, and New Media Like Real People. Center for the Study of Language and Inf. 10, 236605 (1996).

  • Bickmore, T. W. et al. Patient and consumer safety risks when using conversational assistants for medical information: an observational study of Siri, Alexa, and Google Assistant. J. Med. Internet Res. 20, e11510 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parmar, P., Ryu, J., Pandya, S., Sedoc, J. & Agarwal, S. Health-focused conversational agents in person-centered care: a review of apps. NPJ Digital Med. 5, 1–9 (2022).

    Article 

    Google Scholar 

  • Agrawal, K. To study the phenomenon of the Moravec’s Paradox. Preprint at (2010).

  • Inkster, B., Sarda, S. & Subramanian, V. An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: real-world data evaluation mixed-methods study. JMIR mHealth uHealth 6, e12106 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baldry, S. AI and IAPT, the pathway forward. (2022).

  • Fiske, A., Henningsen, P. & Buyx, A. Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J. Med. Internet Res. 21, e13216 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thimbleby, H., Lewis, A. & Williams, J. Making healthcare safer by understanding, designing and buying better IT. Clin. Med. 15, 258 (2015).

    Article 

    Google Scholar 

  • Walsh, C. On building a faster horse: design thinking for disruption. (2017).

  • Rubin J. Handbook of Usability, How to Plan, Design and Conduct Effective Tests (John Wiley & Sons, 1994).

  • ISO-13407 1999 Human-centred design processes for interactive systems. 1999.

  • Von Hippel, E. Lead user: a source of novel product concepts. Manag. Sci. 32, 791–805 (1986).

    Article 

    Google Scholar 

  • Urban, G. & von Hippel, E. Lead user analyses for the development of new industrial products. Manag. Sci. 34, 569–582 (1988).

    Article 

    Google Scholar 

  • Mitchell, W. J. Me++ : The Cyborg Self and the Networked City (MIT Press, 2003).

  • Feuerstein, K., Hesmer, A., Hribernik, K. A., Thoben, K.-D. & Schumacher, J. Living labs: a new development opportunity. In European Living LabsA New Approach for Human Centric Regional Innovation (eds Schumacher, J. & Niitamo, V.-P.). Wissenschaftlicher Verlag (2008).

  • Mangyoku, M. et al. IDeALL: Investigating design-for-all and living-lab methods for engaging users in value co-creation. In 2014 International Conference on Engineering, Technology and Innovation (ICE). pp. 1–8. IEEE. (2014).

  • Nielsen, J. Usability Engineering (Morgan Kaufmann, 1994).

  • Nielsen, J. 10 Usability Heuristics for User Interface Design (Nielsen Norman Group, 1994).

  • Kahneman, D. Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011).

  • Vial, S., Boudhraâ, S. & Dumont, M. Human-centered design approaches in digital mental health interventions: exploratory mapping review. JMIR Ment. Health 9, e35591 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, Y. EDS 2019—Yolanda Martin (Farfetch)—why user centred design is going to get us killed. (2020).

  • Sweeney, C. et al. Can Chatbots help support a person’s mental health? Perceptions and views from mental healthcare professionals and experts. ACM Trans. Comput. Healthc. 2, 1–15 (2021).

    Article 

    Google Scholar 

  • Engel, F. et al. Sensecare: towards an experimental platform for home-based, visualisation of emotional states of people with dementia. In Advanced Visual Interfaces. Supporting Big Data Applications: AVI 2016 Workshop, AVI-BDA 2016, Bari, Italy, June 7–10, 2016, Revised Selected Papers, 63–74 (Springer International Publishing, 2016).

  • EIT Health. Transforming healthcare with AI-The impact on the workforce and organisations. (2020).

  • link